
Comparison of averaging methods for scalar wave propagation in a random elastic layer

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 2979

(http://iopscience.iop.org/0305-4470/16/13/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 16:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 16 (1983) 2979-2986. Printed in Great Britain 

Comparison of averaging methods for scalar wave 
propagation in a random elastic layer 

B Lenoach 
Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland 
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Abstract. The problem of elastic wave propagation in a random layer overlying a 
homogeneous half-space is treated using (i) an averaging method and ( i i )  the Born 
approximation. 

The wave is assumed to propagate normally to the layer so that the equations of 
motion are ordinary differential equations with random coefficients. The two methods 
are shown to have different ranges of validity; the averaging method applies in the range 
where stochastic effects are important. 

1. Introduction 

In Lenoach (1983) we applied the averaging method (Frigerio et a1 1981) to the 
problem of surface waves on a random elastic layer. Mainardi et a1 (1980) used the 
Born approximation in a related one-dimensional model described in 9: 2. The purpose 
of this paper is to compare the averaging method, outlined in 9: 3 and applied to the 
model in 9 4, with the results of the Born approximation (see 9 5 ) .  The methods are 
then compared in the region where stochastic effects are known to be important 
(Papanicolaou 1973, Hersh 1974 and § 6 below) and illustrated by an example in 9: 7. 

2. The model 

Following Mainardi et a1 (1980) we consider a plane wave of frequency w propagating 
in a layered medium which consists of a homogeneous half-space z s 0 and a 
heterogenous layer O s z  s H  (figure 1). The layer density p and elastic parameters 
A, CL are random functions of z ,  i.e. they are stochastic processes indexed by z. As 
in Mainardi et a1 (1980) it is assumed that the displacement components Vi, j = 1, 2, 
3, are 

Vi = Vi(z) exp(-iwt). (2.1) 

The equations of motion are 

(d/dz)(F dVj/dz)+pw2Vi = 0 j = 1 , 2  

(d/dz )[(A + 2 ~ )  d V3/dz] +pw* V, = 0 
(2.2) 
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Figure 1. The heterogeneous layer 0 s z 6 H and homogeneous half-space z s 0. 

with the free-surface boundary condition 

t (n) i l *=H = tjinjlr=H = 0 (2.3) 

where nj = Sj3 is the unit outward normal and t i j  = tji is the Cauchy stress tensor. 
Since both the layer and half-space are isotropic, linearly elastic solids we have 

t3i = exp(-iwt)p ( z )  d V,/dz 

f 3 3  = exp(-iwt)(A + 2 p ) ( z )  dV3/dz. 

j = l , 2  

Assume 

(2.4) 

where p2, p 2 ,  po, p o  are constants andpl(z),  p l ( z )  are stationary, zero-mean, Gaussian 
stochastic processes with 

(Pi(zbi(z’)  =RPP(Iz -2’1) 

RPP(Iz - z’I = ( p i b ) ~ i ( z ’ ) )  = Rp,. 

(F  1(z )cL l(2’)) = R,, (lz - 2’1) 
(2.7) 

Under these assumptions the equations of motion (2.2) become stochastic differen- 
tial equations-the dimensionless parameter E characterises the size of the fluctuations. 
Note that the correlation functions must satisfy the Schwartz inequality 

(2.8) 

All displacement components, because of equation (2.1), may be treated in the 
same way; for definiteness we focus on VI. Define V(z) = Vl(z), t ( z )  = p (I) dVl/dz 
and take V1(0), t(0) to be constants, i.e. assume sure initial data (this assumption is 
the only difference between our model and the model of Mainardi et ai (1980). 
Following Mainardi et al we put 

A = iV1(H) A. = aV.(H) (2.9) 

1/2R 1/2 RFP(z)SR,,, pp . 
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where V&) denotes the solution of the homogeneous auxiliary model. The interesting 
physical quantity is the mean amplification coefficient (A) and it must be computed 
subject to the free surface condition ( t )  (If) = 0. 

3. The averaging method 

In this section we give a brief description of the averaging method which will be 
applied to the wave propagation problem. Details may be found in Frigerio et a1 
(1981). 

The mathematical problem is the following; suppose we are given a differential 
equation 

dfA(t)/dt = AA(t)fA(t) (3.1) 

on a Banach space B with a projection operator Po and intial data fA(0) =fo  in the 
subspace BO = P d .  AA(t) may also be a power series-AA(t) = Z?=l A kAk(t). 
Equation (3.1) has the series solution 

m 

n =O 
f A ( t ) =  1 A "  I.. . I A(rl) .  . .A(tn)dtn.  . . drlfo (3.2) 

1 2 1 1  a... =I" 20 

-the averaging method gives a useful approximation to the projected solution PofA (t)  
for large values of t as well as a small-time correction term. Assume 

Pd(t1) .A(tzm+l)Po=O V m  = 0 ,1 , .  . . t l ,  . . * , f Z m + l  2 0. (3.3) 
This condition, as we shall see, is satisfied by the model of § 2; to second and fourth 
order in A the approximations to PofA ( t )  are given as 

Y $  (t) = exp(A 2tG'2')fo 

Y $  (t)  = (1 + A 2 M ( 2 ) ( f ) )  exp[A ' 1  (G'" + A 2G'4')lf~ (3.4) 

with estimates, O(A"), of the error IpofA(t)- Yi ( f ) \ \  (see Frigerio et al 1981). Here 
G"), G'4' are time-independent operators on Bo; the operator M'2)( f )  gives the 
short-time correction to asymptotic behaviour. 

We are interested in the case when equation (3.1) is a coupled stochastic differential 
equation; specifically Bo = IR2, B = Lz (a, IR2, P) where (a, P) is a probability space. 
The projection Po is then stochastic averaging, i.e. integration over with respect 
to the measure P. 

PoW(t)  = In W(t,  w)P(dw) = (W) ( t ) .  (3.5) 

Hereafter, we consider only the second-order approximation Y&); the generator 
G'2' is 

with the error estimate 

where p (T) is a positive bounded function of T = A *t.  
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Note that only even powers appear because of equation (3.3); this equation is 
satisfied by our model because p l(z ), p l(z ) are zero-mean Gaussian processes so that, 
for example, 

( P l ( Z 1 )  . P l ( Z Z n + l ) ) = O  V n  = 0 , 1 . .  . 2 1 , .  * . , z2,+120. (3.8) 

4. The averaging method applied to the model 

Put p ( z )  = (;:/) so that equations (2.2), (2.4) give 

dp/dz = [ L ~ + E L ~ ( Z ) + E ’ L ~ ( Z ) I ~ ( Z )  

where 

Define 

cos koz ( l /ko)  sin koz )  U, = exp(Loz) = (-,to sin koz cos koz (4.3) 

and q(z)  = U-,(z)  so that 

dq/dz =[eAi(z) +e2Az(~)14(z)  

4 (0) = P (0 )  
(4.4) 

Equation (4.4) is a differential equation of the form (3.1) with z as the ‘time’ 

Ai(z)  = U-,Li(z)U, i = 1,2.  

variable; hence the results of 9: 3 may be applied directly. We have 

( p ( z ) ) =  U, exp(sZzG‘Z’)p(0) (4.5) 

with G‘” given by equation (3.6). Let S, , (@)  = i,“ exp(ipr)R,,(r) dr and define S,,, 
S,,, similarly. Then 

(4.6) 

(4.7) 

( Vl(z )) = exp(yz )[cos az Vl(0) + kopo  sin az t (o ) ]  

( t ( z ) )  = exp(yz) [cosaz t(O)-kowoV1(0) sin a21 

where 

= - ( E ~ ~ ~ H ) { [ s , , ( o ) - R ~  s,,(2ko)I 
+ [So, (0 )  - Re S,, WO)] - 2[S,, (0 )  + Re s,,(2ko)lI (4.8) 

(4.9) a ( w )  = ko + +E ’ k o ~ , ,  (0 )  - t k o b  s,, (2ko) + Im s,, 
The boundary condition ( t ) (H)  = 0 + 

+ 2 Im s,, (2ko)l). 

(V,(z)) = Vl(0) exp(yz) cos a ( z  -H)/cos aH 

( t ( z ) )  = -kO+OVl(0)  sin a ( z  -H)/cos aH. (4.10) 
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Since the solution of the homogeneous auxiliary model is Va(z)= 

(4.11) 

( ~ ( w ) ,  y ( w )  may be though of as the phase and amplitude effects, respectively, of the 
flucruations introduced via equations (2.5) and (2.6). 

( Vl(0)/cos k,,H)cos ko(z - H ) ,  the final result is 

( A )  = (A, cos k&/cos a H )  exp(yH). 

5. The Born approximation 

In Mainardi et a1 (1980) the method used to find a solution correct to O(ez) is the 
Born approximation. The differential equation 

(5.1) (1d/dz -Lo)P(z )  = (eLi(z) + e’Lz(z ) ) P ( z )  

is converted into an integral equation 

where G(z,z’)  is the Green’s matrix of equation (5.1), p , ( z ) =  U,p(O) is the 
homogeneous solution and W = ( L  + dZ). Iterating this integral equation twice and 
averaging the result yields the second Born approximation 

where 

M ( z ,  2’) =(Li(z)G(z,  z’)Li(z‘)) ( 5  -4) 
and we have used (Ll(z)) = 0. 

The Green’s matrix G(z,  2’) is defined as the solution of 

( ld/dz -Lo)G(t,  z ’ )=S(Z - ~ ’ ) l  G(0, z’)  = 0 ( 5 . 5 )  

where the initial condition is chosen to give sure initial data, ( p ( 0 ) )  = p ( O ) .  Therefore 

( p ) ( z ) =  U,[ 1 + ~ 2 ( ~ 0 2 d ~ ~ P O A 2 ( z ’ ) P 0 +  1 POA 1 ( z  ’)A I (z”)Po dz ’ dz ’I)] p (0). 
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Comparison with equation (3.2) shows that equation (5.8) is simply the result of 
truncating the series solution (3.2), modified to include the A2(t) term, at O(e2). 

6. The second-order limit 

We are concerned with problems involving differential equations in which the random 
terms are multiplied by small coefficients. In such circumstances random terms are 
important only if they lead to cumulative effects over long times. Mathematically this 
is expressed by a balance between two limits: small fluctuations and large times. For 
a stochastic equation such as (3.1) the second-order limit is A -* 0, t -* CO with A ’t = T 
fixed; so that t is of order l / A 2 .  Papanicolaou (1973) treats this point exhaustively 
in his review which emphasises applications of the theory: a review from the standpoint 
of probability theory is given by Hersh (1974). 

Papanicolaou and Keller (1971) used a formal ‘two-time’ method to study the 
random harmonic oscillator: in Papanicolaou et a1 (1973) Has’minskii’s limit theorem 
is applied to the problem of a beam in a strongly focusing random medium. The 
usefulness of limit theorems is restricted in practice because they require the explicit 
solution of a diffusion equation and this is rarely possible: it is preferable to approach 
physical problems from the standpoint of differential equations (Frigerio et a1 1981) 

Returning to the Born approximation equation (5.8) gives 

( p ) ( H ) =  UH[l+E2Bb(0) (6.1) 
where 

The second-order limit in  this problem is E + O ,  H +CC with E ~ H  fixed-in this 
limit the Born approximation gives 

= E 2 ~ ~ ( 2 ) .  

The mean amplification coefficient (A)  is then 

(A) = A a ( l  + yH +EH tan k&) 
where E = Q - ko.  This approximation may also be obtained by expanding the result 
of equation (4.11) and neglecting terms of order 72, 7 = E *H. 

7. Discussion of the results 

Let v be a tyjical correlation length of the layer, €or example v = max(v,,, vILp, vpp)  
where vpp = 5, Rpp(r) dr etc, and H‘ be the dimensionless length H’ = H/v. To illustrate 
equations (4.11), (6.4) we examine the dimensionless ratio (lAl)/lAal in the case of 
stochastic fluctuations in I.L only with Gaussian correlation function 

R,, = exp{-[(z - z ’ ) / v l 2 }  (7.1) 
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k,,v 

EH=e2H1(kov /2 ) (  l - ( k o v / 2 )  io exp 

(lAI)/lA.l is, thus, a function of the dimensionless variable kov with E ,  H’ as dimension- 
less parameters restricted by the conditions &’<< 1, H’ >> 1 with E’H’ of order one. 
Figure 2 shows that the two methods give significantly different behaviour and that 
the Born approximation is unsatisfactory for intermediate values of kov. 

~~~ L __ 
0 5  1 0  1 5  2 0  

k ,  ” 
0 

Figure 2. The amplification ratio (lAl)/lAa/ for the correlation functions (7.1):  the upper 
and lower curves are given by the Born approximation and the averaging method respec- 
tively. Numerical values refer to E ~ :  H ’  = 20, 

To summarise, we have treated a slightly modified version of the problem discussed 
in Mainardi et al (1980) focusing on the mean amplification coefficient in the region 
where stochastic effects are appreciable (expressed mathematically by the second-order 
limit). Indeed, the approximation Y: ( t )  = exp[A2tG‘2’lfo becomes exact in this limit 
since if A ’a = s, A ’ r  = 7 equation (3 .7)  is 

so that 

A lim -0 Ipp,fA ( T / A  2, - e x p [ ~ G ‘ ~ ’ ] f ~ ( )  = 0. (7 .5)  
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There is no comparable estimate of the error in terms of A and t for the Born 
approximation-the results of this paper suggest that in the region where stochastic 
effects produce interesting results it is an unreliable technique. 
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